
Dynamic-static Cross Attentional Feature Fusion
Method for Speech Emotion Recognition ⋆

Ke Dong1, Hao Peng2,3, and Jie Che1

1 Hefei University of Technology, Hefei, China
2 Dalian University of Technology, Dalian, China

3 Newcastle University, Newcastle, UK
coliapaston@163.com, ph97135@163.com, 3417410684@qq.com

Abstract. The dynamic-static fusion features play an important role
in speech emotion recognition (SER). However, the fusion methods of
dynamic features and static features generally are simple addition or se-
rial fusion, which might cause the loss of certain underlying emotional
information. To address this issue, we proposed a dynamic-static cross
attentional feature fusion method (SD-CAFF) with a cross attentional
feature fusion mechanism (Cross AFF) to extract superior deep dynamic-
static fusion features. To be specific, the Cross AFF is utilized to parallel
fuse the deep features from the CNN/LSTM feature extraction module,
which can extract the deep static features and the deep dynamic features
from acoustic features (MFCC, Delta, and Delta-delta). In addition to
the SD-CAFF framework, we also employed muti-task learning in the
training process to further improve the accuracy of emotion recognition.
The experimental results on IEMOCAP demonstrated the WA and UA
of SD-CAFF are 75.78% and 74.89%, respectively, which outperformed
the current SOTAs. Furthermore, SD-CAFF achieved competitive per-
formances (WA: 56.77%; UA: 56.30%) in the comparison experiments of
cross-corpus capability on MSP-IMPROV.

Keywords: Speech Emotion Recognition · Attention Mechanism · Fea-
ture Fusion · Multi-view Learning · Cross-corpus

1 Introduction

With the development of human-computer interaction (HCI) system, speech
emotion recognition (SER) has gradually become a hot topic. The human-
computer interaction systems with efficient SER method can provide targeted
feedback and support based on the emotional state of the specific speaker.

The main purpose of speech emotion recognition is to provide assistance
in recognizing the emotional information in the speech signal and understand-
ing the emotional activities of the human. In order to explore the features in
speech signals, a series of feature vectors of speech signals are introduced into
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SER, including Mel frequency cepstral coefficients (MFCC), differential coeffi-
cient (Delta). In addition, the deep learning techniques can automatically extract
the deep information contained in the feature vectors without manual calcula-
tion and feature adjustment. Typically, CNN is widely applied to extract static
acoustic features of different scales in SER [9], and LSTM is often employed to
extract dynamic features (or temporal features) of original data due to the tem-
poral characteristics of its network structure. However, the deep speech emotion
recognition model with single-view inputs can not further improve the perfor-
mance during training process. Sun et al. suggest that the accuracy of the model
can further improved by introducing multi-view features [16]. The dynamic-
static dual-view fusion feature can be a widely utilized multi-view features in
SER [17]. For example, Sun et al. proposed a serial method which puts the
static speech data from CNN into LSTMs to mine the potential temporal cor-
relations in the speech signals [15]. However, the serial strategy only connects
the existing features which can not mine the underlying information in origi-
nal features. In comparison with the serial fusion strategy, the parallel fusion
can extract the potential information from the original inputs more effectively
[19]. Furthermore, we note that the performance of the feature fusion algorithm
can be enhanced by utilizing the attention mechanism [18]. For instance, Dai et
al. proposed an attentional feature fusion module (AFF), which can utilize the
properties of the encoder-decoder to fuse the dual input features of the module
[5]. In AFF, however, the global features and local features should be distin-
guished before input. It thus can be found that AFF is not good at fusing the
original inputs with unpredictable relationships or equal importance. To address
this problem, we propose an cross attentional feature fusion module (Cross AFF)
that can be utilized to not only fuse the dual input features equivalently, but also
recognize the importance of each feature in feature fusion process. Moreover, a
dynamic-static cross attentional feature fusion method (SD-CAFF) is proposed
to obtain the improved multi-view fusion features based on the Cross AFF. The
main contributions of this paper are summarized as follows:

• A dynamic and static cross attentional feature fusion method (SD-CAFF) is
developed to extract and integrate the complementary information existing
in dynamic and static features.

• We propose a CNN-based static feature extraction module to mine the deep
static features in mel frequency cepstrum coefficient (MFCC).

• The LSTM-based dynamic feature extraction module is proposed to explore
the underlying deep dynamic features in the combination of MFCC and
MFCC differential coefficients (Delta and Delta-delta).

• We develop a cross attentional feature fusion mechanism (known as Cross
AFF), which can be applied to equivalently fuse the dual-view inputs and
automatically ascertain the weight of each feature.

The rest of this paper are organized as follows: The specific SD-CAFF structure
and related algorithms are discribed in Sec. 2. The related comparative experi-
ments and ablation experiments are conducted and analyzed in Sec. 3. Finally,
Sec. 4 concludes this paper.



Title Suppressed Due to Excessive Length 3

2 Methodology

This section introduces the main framework of the SD-CAFF model in detail
(see Fig. 1).

Fig. 1: The framework of the SD-CAFF architecture. The architecture consists
of three parts: CNN static feature extraction module (CNN), Lstm dynamic
feature extraction module (LSTM) and cross-attention feature fusion module

(Cross AFF). In terms of classification, SD-CAFF also utilizes multi-label
auxiliary learning based on emotional labels and gender labels.

2.1 Acoustic Feature Extraction

Mel frequency cepstrum coefficient (MFCC) is a widely utilized acoustic feature.
In this paper, MFCCs are adopted as the static acoustic feature. Moreover, the
first-order and second-order differential coefficients (Delta and Delta-delta) of
MFCC are utilized to introduce the dynamic information. The process to obtain
the acoustic features is illustrated in Fig. 2. The obtained MFCC features are
employed as the input static acoustic features of SD-CAFF and can be utilized
to calculate the Delta coefficients (defined in Eq. (1)).

Fig. 2: Extraction of Acoustic Features
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delta(t) =

∑N
n=1 n (mfcct+n −mfcct−n)

2
∑N

n=1 n
2

(1)

where mfcct+n and mfcct−n are MFCC coefficients, and delta(t) is the final
delta coefficient. The Delta-delta coefficient is obtained by applying the same
algorithm for the delta coefficient, which can be calculated as Eq. (2).

delta-delta(t) =
∑N

n=1 n (deltat+n − deltat−n)

2
∑N

n=1 n
2

(2)

with delta-delta(t) being the final Delta-delta coefficients. Therefore, we have
obtained the static and dynamic acoustic features.

2.2 Dynamic-static Cross Attentional Feature Fusion Method

The framework of dynamic-static cross attentional feature fusion method (SD-
CAFF) consists of three parts: CNN static feature extraction module, LSTM
dynamic feature extraction module and Cross attentional feature fusion module
(Cross AFF).

CNN Static Feature Extraction Module This paper proposed a CNN static
feature extraction module, which is mainly composed of 2D convolution layer,
batch normalization layer and activation function layer. Following the principle of
lightweight network, this module utilizes DY-ReLU [4] as the activation function
for superior performance.

As shown in Fig. 1, the CNN static feature extraction module is structured by
five 2D convolutional kernels. For the first and second layers, each convolutional
kernel in conjunction with a layer of a layer of BatchNorm2d, and a layer of DY-
ReLUB. The other convolutional kernels are jointly with a layer of MaxPool2d,
a layer of BatchNorm2d, and a layer of DY-ReLUB.

The issue accomplished by CNN static feature extraction module can be
expressed as Eq. (3).

XS = CNN(mfcc(n)) (3)

where XS is the deep static feature and mfcc(n) is MFCC coefficients.

LSTM Dynamic Feature Extraction Module The recurrent architecture
of LSTM can settle the problems in temporal sequence modelling scenarios.
Therefore, a BiLSTM module is adopted to extract depth information in dynamic
acoustic features. Since all three acoustic features (MFCC, Delta and delta-delta)
may contain deep dynamic features, the input of LSTM exists more than one
combination. For example, fusion features can be obtained by adding MFCC and
Deltas, or combining Deltas and Delta-deltas. This paper utilizes mfcc⊕delta to
represent the combinations of acoustic features. A feature selection experiment
is designed to study which feature is the best match for the LSTM module in
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SD-CAFF. The specific experimental steps will be demonstrated in Sec. 3. The
algorithm of LSTM module can be summarized as Eq. (4).

XD = BiLSTM(mfcc⊕ delta) (4)

where XD is the deep dynamic feature produced by LSTM feature extraction
module.

Cross Attention Feature Fusion Mechanism (Cross AFF) Based on the
AFF mechanism proposed by Dai et al. [5], this paper proposes a new feature
fusion mechanism called cross attention feature fusion (Cross AFF). Different
from AFF, Cross AFF can equivalently fuse the dual inputs of the module.
Being the most significant part of Cross AFF, Cross MS-CAM (inside the gray
dotted frame in Fig. 3) can explore hidden correlation between dual inputs.

Fig. 3: A cross-attention feature fusion mechanism that can equally integrate
dual features. For this module, the input XS and XD are equivalent.

Different from the traditional MS-CAM module, utilizing two parallel Cross
MS-CAMs can integrate the dual parallel inputs XS and XD. Specifically, Cross
MS-CAM fuses the global attention and the local attention of the input, and
applys the sigmoid function to calculate the weight WS of the fusion result
XS ◦XD. Then, the attentional feature X ′

S can be obtained by multiplying the
the weight WS and the initial static feature XS . The process of the double Cross
MS-CAM can be expressed as Eq. (5).

X ′
S = XS ⊗MC (XS ◦XD) = XS ⊗ σ (L (XS)⊕ g (XD)) (5)

where MC(x) ∈ RC×H×W represents the attention weight generated by Cross
MS-CAM. ⊕ refers to broadcast addition, ⊗ means element-by-element multi-
plication, and ◦ is the cross-fusion of local and global attention. σ (x) represents
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the Sigmoid function. Similarly, the solution of attention feature X ′
D related to

feature XS is calculated in Eq. (6).

X ′
D = XD ⊗MC (XD ◦XS) = XD ⊗ σ (L (XD)⊕ g (XS)) (6)

In [5], the global and local features should be distinguished before input
into the attention feature fusion module. However, if the importance of the dual
inputs is equal or unknown, choosing which one is the global feature or the local
feature will become a complex issue. Given this, this paper improves the AFF
algorithm and proposes a cross-attention feature fusion mechanism (Cross AFF)
to fuse the input dual features equivalently. The proposed Cross AFF can better
pay attention to the most different information among multiple input features
to tackle the feature fusion task effectively [19].

Due to the symmetrical structure of double Cross MS-CAM, the dual inputs
of Cross AFF are completely equivalent. As two feature graphs extracted from
different views, X and Y are respectively put into the Cross MS-CAM module.
To connect the X ′ and the Y ′, a concatenation layer (Concat) is applied for
obtaining the final fusion feature Z. The process of Cross AFF can be calculated
as Eq. (7).

Z = X ⊗MC(X ◦ Y ) + Y ⊗MC(Y ◦X) (7)

where X ′
S and X ′

D are inputs of the feature fusion module of SD-CAFF. The
Z obtained by fusion algorithm is the final output of the method.

2.3 Multi-label Auxiliary Learning

The current studies regard gender as a factor influencing the results of emotional
recognition [7]. In [11], liu et al. proposed a multi-label center loss function,
also known as joint loss function. The joint loss function has the advantages of
both center loss and multi-label auxiliary learning simultaneously, which can be
formulated as Eq. (8).

Loss = µ (Lossε0 + λ · Lossε0) + (1− µ) (Lossg0 + λ · Lossg0) (8)

where λ and µ are two hyperparameters to control the loss ratio. In order
to eliminate the influence of gender on emotional label classification task, this
paper utilized this multi-label center loss as the loss function in the SD-CAFF
training process.

3 Experiment

In this section, this paper evaluates the performance of SD-CAFF on two bench-
mark datasets (IEMOCAP and MSP-IMPROV). To be specific, comparative
experiments are first conducted to demonstrate the accuracy advantage of SD-
CAFF compared to current SOTAs (state-of-the-art). In addition, ablation ex-
periments are conducted to evaluate the effectiveness of SD-CAFF.
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3.1 Datasets

In this work, a series of experiments are conducted on two widely utilized bench-
mark datasets (IEMOCAP and MSP-IMPROV) to validate the emotion recogni-
tion accuracy of SD-CAFF. The illustration of IEMOCAP and MSP-IMOROV
are listed as follows.

• IEMOCAP: The speech from IEMOCAP is divided into small utterances,
each of which is basically 3-15 seconds in length. Note that we only utilized
the utterance in the improvised scenario to ensure emotional authenticity.
The utterances are classified into ten categories of expert-evaluated emo-
tional labels. Due to the activation and valence domain of Excited and Happy
being close, the utterances labeled Excited are merged into the Happy cat-
egory for dataset augmentation [1]. In this paper, we employed four widely
utilized emotional labels (Neutral, Sad, Happy, and Angry) [20] to compare
and analyze the performance of SD-CAFF. In addition, we also adopt the
gender labels for the multi-label auxiliary learning.

• MSP-IMPROV: In this experiment, only utterances marked as improvisa-
tion were utilized similar to IEMOCAP, and gender labels and four standard
emotional labels are retained [2].

3.2 Experiment Setup

Implementation Details In this study, the performances on IEMOCAP and
MSP-IMPROV datasets are regarded as the evaluation criteria of the SD-CAFF.
This paper randomly divided the utterances in each dataset into five clusters for
5-fold cross-validation.

Three acoustic features (MFCC, Delta, and Delta-delta) are extracted from
the utterances segments employing the librosa library. After setting the param-
eters in [11], MFCC tensors in the shape of (mfcc × time) is obtained, where
mfcc equals 60 representing the MFCC coefficients, and time equals 251 which
is the number of frames. The Delta and Delta-delta coefficients are calculated
in the MFCC dimension (axis = −2) of the tensor, and the feature obtained is
consistent with the shape of the MFCCs. Finally, 12402 IEMOCAP data and
21895 MSP-IMPROV data are obtained after speech signal preprocessing. Each
data comprises an MFCC feature, a Delta feature, a Delta-delta feature, and the
corresponding gender and emotion labels.

In order to implement the joint loss function, two sets of hyperparameters
are introduced: center_rate : lr_cent = 0.15 : 0.1; alpha : beta = 7 : 3, where
center_rate is the center loss ratio, lr_cent is the center loss learning rate, and
alpha : beta is the proportion of emotion and gender labels. The Adam optimizer
with a learning rate of 5× 10−3 calculates the gradient of the method, and the
number of epochs and batch size respectively are 30 and 32. In addition, the
entire training process was implemented on a GeForce RTX 3090 with 24 GB
memory, and the CPU was a 15-core AMD EPYC 7543 32-core processor. The
code was written by Python 3.8 according to the framework PyTorch 1.10.0 and
released on https://github.com/AdriaKD/SD-CAFF.git.
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Evaluation Criteria Two kinds (WA and UA) of accuracy are utilized as the
criteria to measure the performance of the proposed method and other compar-
ison methods. The weighted accuracy (WA) can be calculated by Eq. (9).

WA =

∑C
n=1

(
NC

NT
∗ACCclass

)
C

(9)

where NC represents the total number of samples in specific class, NT represents
the total number of samples, ACCclass represents the accuracy of the class, and
C represents the total number of classes. In addition, the unweighted accuracy
(UA) can be obtained by Eq. (10).

UA =

∑C
n=1 ACCclass

C
(10)

where ACCclass is the accuracy of the class, and C indicates the total number
of classes. UA pays more attention to the average performance of the model on
each category compared with WA. Therefore, UA is more advanced in verifying
the recognition performance of method between different classes.

3.3 Experimental Results

Feature Selection
In this paper, a feature selection experiment is designed to select the best

dynamic input of SD-CAFF. To be specific, we compare the WA and UA of SD-
CAFF with different acoustic features combinations on IEMOCAP. We apply ⊕
to represent the concatenation of different features, i.e., mfcc ⊕ delta refers to
the concatenation of MFCC and Delta.

Table 1: The dynamic feature selection experimental results (%) of SD-CAFF
on IEMOCAP

The dynamic feature Overall Acc (WA) Class Acc (UA)
MFCC 75.06 74.05
Delta 73.80 72.07

Delta-delta 73.18 71.94
Delta + Delta-delta 74.39 73.36

MFCC + Delta 75.77 74.89
MFCC + Delta-delta 75.37 73.96

MFCC + Delta + Delta-delta 74.96 73.99

in Tab. 1, mfcc ⊕ delta achieves the best performance (WA: 75.78%; UA:
74.89%) compared to other combinations. Therefore, mfcc ⊕ delta is selected
as the final dynamic acoustic feature combination and adopted as the input of
LSTM feature extraction module.
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Comparison with State-of-the-Art Networks In order to further validate
the performance of SD-CAFF in speech emotion recognition, we compare SD-
CAFF with a series of current state-of-the-art methods (SOTAs).

Table 2: The Overall Acc (WA) (%) and Class Acc (UA) (%) of SD-CAFF and
SOTAs on IEMOCAP and MSP-IMPROV

Methods IEMOCAP MSP
WA UA WA UA

Jiaxing L. (TFCNN+DenseCap+ELM) [10] 70.34 70.78 - -
Anish N. (MHA+PE+MTL) [12] 76.40 70.10 - -

Huilian L. (CNN-BLSTM) [6] 74.14 65.62 - -
Qi C. (HNSD) [3] 72.50 70.50 - -

S. Latif (Semi-supervised AAE) [8] - 68.80 - 63.60
Amir S. (CycleGCN) [13] 65.29 62.27 57.82 55.42
Bo-Hao S. (GA-GRU) [14] 62.27 63.80 56.21 57.47
SD-CAFF (our model) 75.78 74.89 74.89 74.89

As shown in Tab. 2, SD-CAFF achieves the UA of 74.89% in the IEMO-
CAP, which is significantly higher than other SOTAs. Also, SD-CAFF obtains
the best class balance among all models as its UA is 4.11% higher than the
best UA in the control group. Although the best WA in the control group is
76.4% achieved by MHA+PE+MTL, which is silightly higher than SD-CAFF
(WA: 75.78%), the UA (70.1%) of MHA+PE+MTL is 4.79% lower than the UA
(74.89%) of SD-CAFF. Furthermore, this paper validate SD-CAFF on MSP-
IMPROV dataset to evaluate the model performance in the cross-corpus issue.
Although the performance of the SD-CAFF on the MSP-IMPROV is slightly
lower than some SOTAs specially designed for cross-corpus, it still achieves com-
petitive performance (WA: 75.78%; UA: 74.89%). Compared to the CycleGCN
model, SD-CAFF is 0.8% higher in UA. Simultaneously, the weighted accuracy
of SD-CAFF is 0.56% higher than that of GA-GRU. Note that both the WA and
UA of SD-CAFF on IEMOCAP datasets are much higher than CycleGCN (WA:
65.29%; UA: 62.27%) and GA-GRU (WA: 62.27%; UA: 63.8%). It thus can be
found that the performance on speech emotion recognition and the cross-corpus
competence can be enhanced by the proposed SD-CAFF.

3.4 Ablation Study

In the ablation study, three baselines (CNN baseline, LSTM baseline, and Concat
baseline) are designed to analyze the impact of the dynamic-static feature fusion
mechanism. Single-view features are directly employed in CNN/LSTM baselines,
while the multi-view features are fused by Concat baseline applying the simple
operation. The structure of these baselines are shown in Fig. 4.

In order to eliminate irrelevant effects on experiments, the other training
parameters of the baselines were consistent with SD-CAFF. In addition, the
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Fig. 4: (a). The structure of CNN Baseline; (b). The structure of LSTM
Baseline; (c). The structure of Concat Baseline; (d). The structure of SD-CAFF

entire ablation experiment are conducted on IEMOCAP. In Tab. 3, the WA
and UA of Concat baseline is higher than that of single-view baselines, and the
overall performance of SD-CAFF is superior to Concat baseline. Therefore, we
can conclude that combining multi-view deep features is beneficial to extract
complementary information in the dynamic-static feature spaces. In addition,
the Cross AFF module can better mine the complementary information from
the multi-view deep features in comparision with concatenation.

Table 3: Comparative experimental results (%) of baseline methods and
SD-CAFF on IEMOCAP

Methods Neu Sad Ang Hap WA UA
CNN Baseline 80.70 77.14 66.09 65.91 73.81 73.06
LSTM Baseline 77.25 76.64 58.48 56.41 69.18 67.81
Concat Baseline 82.80 77.14 62.28 66.97 74.07 73.17

SD-CAFF(final) 83.99 79.61 66.44 66.82 75.78 74.89

4 Conclusion

This paper proposes the dynamic-static cross attentional feature fusion method
(SD-CAFF) to improve speech emotion recognition accuracy. SD-CAFF is an
attentional feature fusion method, which can parallel fuse the muti-view fea-
tures effectively by the cross attentional feature fusion module (Cross AFF).
Cross AFF with symmetric structure can equivalently fuse the static and dy-
namic features from the feature extraction modules. In this paper, CNN and
LSTM are utilized as feature extraction modules to extract deep features from
acoustic features. The CNN static feature extraction module is first utilized to
recognize the deep information in the static acoustic feature (MFCC). Then,
LSTM is implemented to extract the underlying associations in the combina-
tion of static acoustic features (MFCC) and dynamic acoustic features (Delta
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and Delta-delta). In addition, the training process utilizes a multi-label auxiliary
learning loss to enhance the performance of the proposed model. The WA and
the UA are applied to measure the performance of SD-CAFF. The experimental
results on the benchmark datasets demonstrate that SD-CAFF (WA: 75.78%;
UA: 74.89%) achieved superior performance in comparation with the current
SOTAs in SER. Furthermore, the rigor of SD-CAFF structure and the necessity
of each module are verified by ablation experiment.
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